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We have made computational experiments to study the stability and long-time 
evolution of two-dimensional wakes. We have used the VORTEX code, a finite- 
difference realization of two-dimensional motions in incompressible inviscid 
fluids. In  the first experiment an initial shear-unstable triangular velocity profile 
evolves into a non-homogeneous, finite-area, asymmetric vortex array and like- 
signed regions attract and fuse (or coalesce). Enhanced transport across the 
profile is due to ‘capture’ and convection of small-scale vortex regions by larger 
opposite-signed vortex regions. In the following experiments we study the 
stability of an asymmetric four-vortex finite-area system corresponding to a 
von I<km&n street of point vortices. Here the critical parameter is bla, the 
initial transverse-to-longitudinal separation ratio of vortex centres. At 

the four-vortex system is stable and we observe that large-area vortex regions 
develop elliptical (m = 2), triangular (m = 3), etc. surface modes owing to mutual 
interactions. At b/a = 0 the measured growth rate is smaller than that for the 
corresponding von KArmtin system and at  bla = 0.6 the measured growth rate 
is larger. At bla = 0 one vortex undergoes fission in the high-shear field produced 
by two nearest-neighbour opposite-signed vortex regions. Heuristic comparisons 
are made with the two-dimensional tunnel experiments of Taneda and others. 

b/a = 0.281 

1. Introduction 
In  recent years there have been renewed efforts to understand the nonlinear 

dynamics of interacting vortex structures in high-Reynolds-number (high-R) 
two-dimensional jets and wakes. Carefully controlled experiments (Taneda 1959, 
1965; Durgin & Carlson 1971) that minimize three-dimensional effects in low- 
noise wind tunnels have shown that asymmetric vortex structures have a finite 
lifetime, i.e. they become unstable. At variable distances downstream (many 
wavelengths of the fundamental vortex structure), the observed pattern abruptly 
loses its coherence and degenerates or ‘breaks down into a less ordered pattern ’. 
From this visually chaotic state evolves a secondary asymmetric vortex structure, 
more diffuse than the primary structure and of longer wavelength. This hierarchy 
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of two-dimensional vortex structures is sufficiently uncomplicated that a 
deterministic non-statistical approach should elucidate the basic mechanisms 
involved. As exemplified below, numerical simulations with a two-dimensional 
zero-viscosity model can provide some insight. 

In  flat-plate wake experiments, Sat0 & Kuriki (1961) also measured the 
properties of high-R wakes at  moderate distances behind flat plates. Their high- 
quality hot-wire data were interpreted by Zabusky & Deem (1971) in a com- 
putational/experimental study as consistent with the motion of an asymmetric 
wake of elliptical nutating vortices. Zdravkovich (1968, 1969) and Durgin & 
Carlson (1971) also found elliptical and other distorted vortex structures to be 
a common occurrence in wakes behind cylinders. The elliptical shape of the 
vortices is a non-viscous effect due to the mutual interaction of nearby vortex 
regions. 

To clarify the qualitative features of ideal high-R laminar flows downstream 
ofjut plutes, it  is convenient to describe phenomena in contiguous spatial regions. 

(i) At very short distances one finds nearly laminar flow with a Gaussian-type 
velocity profile. For R > lo4 the inviscid Rayleigh equation provides eigenfunc- 
tions and unstable eigenvalues. R is based on the length of the plate. The Reynolds 
number based on the boundary-layer thickness is greater than 500. 

(ii) At  short distances, induced perturbations (via acoustically driven loud- 
speakers, vibrating ribbons, etc.) grow in accordance with linear stability theory. 
For R > lo4 Sat0 & Kuriki (1961) and Zabusky & Deem (1971) showed that the 
Rayleigh equation provides unstable eigenvalues that agree with observations. 

(iii) At moderate distances the fastest growing modes have the most energy 
and saturate when a regular asymmetric street of elliptical vortices forms. The 
finite-sized elkiptical vortices undergo a slow pitching or nutating motion in the 
laboratory frame of reference. This phenomenon was also observed in the wake 
of cylinders and in two-dimensional jets by Beavers & Wilson (1970). 

(iv) At large distances, the vortex structure may break down (collapse or 
undergo a transition) to another asymmetric street, where the longitudinal dis- 
tance between nearby vortices in the same row can increase by a factor of 2-10 
depending on the Reynolds number (Taneda 1959). 

(v) At  very large distances the breakdown and formation of the new vortex 
structure may be repeated several times. However, at very high R the turbulent 
or chaotic structure may persist, 

In  wakes beyond cylinders and other bluff bodies, regions (i) and (ii) are 
inseparable and pockets of vorticity can aggregate alternately on either side. 
At certain time intervals the upper and lower vortex concentrations are con- 
vected away to form an asymmetric street. For high Reynolds numbers, the rate 
of production of these vortex aggregations or the Strouhal number may be 
described by a vortex filament theory as shown by Gerrard (1967). 

For high-R flows the above regions may not be clearly separated. The flow 
configuration at moderate to large distances (particularly at very high R) is 
very sensitive to the precise operating conditions and excitation mechanisms, 
that is, the predictability of the flow decreases at  large distances or long times. 
The suppression of three-dimensional disturbances, the rigidity of the mounting, 
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the smoothness of the construction and excitation mechanisms, the quietness 
of the wind tunnel, and a finite viscosity all contribute to a more predictable 
result. 

Computer simulation studies of the stability of wake-like configurations have 
been carried out for several years. A review of the efforts in this field has been 
given as an annotated bibliography by Harlow (1970). Calculations by Abernathy 
& Kronauer (1962) on the evolution of a laminar wake with a rectangular velocity 
profile arising from two rows of vortex filaments demonstrated the formation of 
the von Kkmhn vortex street, They also observed the capture or trapping of 
vortex filaments in regions of opposite-signed vorticity. This was also seen in 
calculations by Harlow & Fromm (1964), who studied the flow of a viscous heat- 
conducting fluid past a cylinder. 

The linear stability theory for symmetric and asymmetric configurations of 
point vortices begun by von Kkm&n has been elaborated by Kochin (1939) 
and Kochin, Kiebel & Roze (1964). For two opposite-signed streets of point 
vortex filaments the symmetric configuration is unconditionally unstable. The 
asymmetric configuration on the other hand is only stable if the transverse-to- 
longitudinal separation ratio bla is 0.281. However, as emphasized by Kochin 
et al. (1964, pp. 226-234), this is a necessary condition: “Afirst-order perturbation 
theory shows that the positions of vortices in a street with b/a = 0.281 will 
separate by a finite amount.” Rosenhead (1930) examined the linear stability 
of the b/a = 0.281 asymmetric street for circular vortex regions of small but 
finite area. However, this calculation is not applicable to strictly two-dimensional 
Jinite-area vortex streets, as described below. 

Most past analytical and computational work (Abernathy & Kronauer 1962) 
has concentrated on studying point vortex configurations, that is, vortex de- 
formations are excluded from the dynamics. The reasons for excluding deforma- 
tions of finite-area vortices can be summarized by quoting Bassett (1888, vol. 2, 
p. 42): “The mathematical difficulties of solving this problem when the initial 
distribution of the vortices and the initial forms of their cross-sections are given, 
are very great; and it seems impossible in the present state of analysis to do more 
than obtain approximate solutions in certain cases.’’ 

Our study generalizes and considers finite-area constant-density vortices 
(Rankine vortices; Lamb 1932, p. 29) confined by a contour 

r2((e) = R $ + ~ C ~ ~ ~ ~ ~ ~ + C . C . ,  
m 

where r is measured from the vortex centre. (The variable r2 is used to simplify 
the verification of area conservation.) For a/R: 4 1 a translation with no dis- 
tortion corresponds to an m = 1 disturbance and an m = 2 disturbance results 
in an elliptic shape. Generally, high-m disturbances can arise through close 
nonlinear interactions as shown by Christiansen & Roberts (1969) and by 
Christiansen (1973). 

There has also been work on wake-like configurations. Using the VORTEX 
code, Christiansen (1970) studied the instability of a trapezoidal longitudinal 
velocity distribution with widely separated flanks and subject to random 
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perturbations. The final state was four staggered elliptically shaped vortices as 
found by Abernathy & Kronauer (1962, figures 10 and 11). Solving a finite- 
difference representation of the Navier-Stokes equation, Deem, Hardin & 
Zabusky (1971) initially perturbed a laminar Gaussian profile with a second 
harmonic plus a small random perturbation and observed the growth of four 
elliptically shaped vortices of unequal strength. There followed a period of 
quasi-stationary evolution of the vortex configuration and finally a rapid co- 
alescence of pairs of like-signed vortex regions. Similar phenomena are described 
below in the simulations of a triangular velocity profile and the evolution of two 
pairs of opposite-signed asymmetrically placed vortex regions. 

2. Two-dimensional motions in ideal fluids 

continuity and Euler equations 
The incompressible inviscid fluid (ideal fluid) can be described by the coupled 

v.u  = 0, (1) 
( 2 )  aulat + u . vu = p-lop. 

For strictly two-dimensional motions the vorticity has one component in the 
z direction orthogonal to the plane of motion and one can introduce a stream 
function 9: 

where V = exax+evag. 
Substituting (3) and (4) into ( 2 )  yields the familiar Liouville equation (analogous 
to the one-dimensional Vlasov equation of plasma physics) 

which describes a Hamiltonian system with characteristic velocities 

u = v x (%$I, (3) 
c=e,.Vxu=-Q2$, (4) 

ct+$ucz-$xcu= 09 (5) 

2 = @v, g = -@x. (6) 

Any state of the system is described by the vorticity distribution <(x, y) and 
can evolve into all other states subject to the constraints imposed by the con- 
servation laws (integrals are taken over a finite region) 

P = p/Ju dx dy (linear momentum), (7) 

L = pJlr x udxdy (angular momentum), ( 8 )  

E = &plJ IuIadxdy = $pJJ<$dxdy (kinetic energy). (9) 

A(<)  dc = constant (vorticity areas), (10) 
where A(c)d< is the area between two vorticity contours c and c+dc, Helm- 
holtz’s theorem tells us that these areas are convected with the fluid and hence 
it is convenient to study systems where the vorticity density 5 is constant and 
takes on the values +&, 0 and -&. The area conservation law is simply the 
conservation of area within the contours surrounding these regions. 

The numerical experiments have been carried out with the particlelfield 
(vortex filament-stream function or vorticity) VORTEX code (Christiansen 
1970). This algorithm is based on the fact that the motion of vortex filaments is 
described by the ordinary differential equations ( 6 ) .  The stream function is 
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determined from the distribution of point vortices by numerically inverting the 
Poisson equation (4). The advantages and deficiences of this method were studied 
by Christiansen (1971) for the simple case of a single circular vortex of constant 
vorticity go (Rankine vortex). The numerical experiments presented below have 
been carried out using 3200 positive or negative point vortices that were moved 
on a Cartesian mesh of dimensions 64 x 64. In  general nine different types of 
boundary conditions were available. The appendix describes pertinent details 
of the code's operation. 

Errors are inevitable in solutions produced by finite-difference methods. In  
the VORTEX code no attempt is made to enforce conservation or 'semi- 
conservation ' (continuous temporal variables) of mass (local incompressibility 
of the flow), momentum, energy, enstrophy (Leith 1968) or area. These quantities 
are monitored to allow one to assess the quality of the run (see appendix). 
Although the velocity field calculated at  the mesh points is solenoidal, the 
interpolations used to extract the velocity of a vortex filament introduce a local 
violation of incompressibility which is manifest in the figures below as a fine 
wavelike structure, particularly on the surface of the vortex region. One easily 
resolves this structure on the large-area vortices, e.g. figure 5 ( t  = 8.75), figure 6 
(t  = 7-5) and figure 10 (t = 7-0). Note that the fine structure becomes sharper 
and penetrates deeper into the vortex regions at  later times; see figure 4 ( t  = 8-75). 
Also long 'arms ' of vorticity are dispersed, indicating that small-scale phenomena 
are not adequately represented. These short-wavelength truncation errors do 
not cause instability and apparently do not contribute greatly to the large-scale 
motions for the duration of our runs. 

3. Epitome of numerical experiments 
The numerical experiments summarized in this section and outlined in table 1 

are all related to our abstractions of high-R wakes behind flat plates or bluff 
bodies. These are initial-value problems and in discussing laboratory experiments 
we assume that the time elapsed in a calculation corresponds to distance down- 
stream. Zabusky & Deem (1971) validated this assumption by comparing 
numerical solutions of the Navier-Stokes equation with the flat-plate wake 
experiments of Sat0 & Kuriki. The calculations start from uniform vorticity 
distributions located in a box with periodic boundary conditions in x and either 
fixed or periodic boundary conditions in y. Equations (4) and (5) are normalized 
such that a vorticity density go = N / A  ( N  = number of point vortices confined 
to  the area A )  will produce a rotational period of To = 47r/C0 units of time. The 
time step in an integration initially satisfies the Courant-Friedrichs-Lewy con- 
dition by a wide margin and is taken as 

where 

In  Q 5 we discuss the laminar triangular longitudinal velocity profile with ran- 
dom perturbations (experiment I) and show that the linearly unstable profile 
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Eccentri- n-l (area Elapsed Number of 
city of of typical y time, time 

Expt. b/a vortices vortex) boundaries TE steps 6 TE/To 

I Laminar wake - P 10.5 1344 6.25 

I1 0.281 0.0 9 P 9.0 576 27-0 19.4 
I11 0,281 0.0 35 P 9.0 576 7-0 5.0 
IV 0.281 0.85 26 P 3.0 192 9.4 2.24 
V 0.281 0.85 26 F 3.0 192 9.4 2.24 

VI 0.6 0.7 35 P 24.0 768 7.0 13.3 
VII  0.6 0.7 35 P 6.0 192 7.0 3-3 
VIII 0.6 0.0 35 P 6.0 192 7.0 3.3 
IX 0.6 0.0 9 P 9.0 1152 27.0 19.4 

x 0.0 0.0 35 P 17.0 576 7.0 9.45 

TABLE 1. Experiments presented in this paper. In  column 5, P and P mean fixed or 
periodic y boundaries. In column 9, To = 4n/c0 is the rotation period of the vortex. 

transforms into an asymmetric (staggered) array of unequal-strength vortex 
regions which coalesce or fuse. 

I n  $ 6 we begin the study of the stability of four finite-area vortex regions, with 
periodic boundary conditions in the longitudinal (x) direction. The circulation of 
each vortex is I',, = nRi& = 766. The parameters of the study are the following. 

(i) The area of the vortex regions. 
(ii) The initial shape of the regions. 
(iii) The transverse boundary conditions (fixed or periodic). 
(iv) Thenatureof the perturbation to one or more vortex regions (lateral orlon- 

gitudinal displacement of the centroid of a vortex region, shape or size change, etc.). 
(v) The transverse-to-longitudinal separation ratio b/u of the vortex centres. 

Section 6 studies the case b/u = 0.281 (experiments 11-V), known to be least 
stable for point vortices. For runs of duration i 9  circulation periods, we find 
stability. 

I n  $ 7 we treat the case b/u = 0.6, known to be unstable for point vortices, and 
we find instability followed by fusion of like-signed vortices. See experiments 
VI-IX . 

I n  $ 8  the standing-wave case b/a = 0 is treated and we find instability and 
a peculiar strong dynamical interaction that finally leads to a rapid fission of 
one vortex followed by fusion of vortex regions on a longer time scale. See experi- 
ment X. 

The results are visualized by displaying the location of vortex filaments (par- 
ticles) a t  separated times. Dark grey areas represent regions of negative vorticity 
(clockwise rotation) and light grey areas represent regions of positive vorticity 
(counterclockwise rotation); see figures 2, 4-8 and 10. A computer-generated 
film has been made that vividly demonstrates many of the phenomena. K.V. 
Roberts showed and discussed this film a t  the European Conference on Com- 
putational Physics (Geneva, April 1972) as part of his talk on a review of numerical 
methods in fluid dynamics (Roberts & Christiansen 1972). 
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4. Comments on previous analytical work 
The original calculation by von KBrmBn for an asymmetric point vortex 

system has been repeated by Lamb (1932,s 15 b, p. 228) and somewhat generalized 
by Kochin et al. (1964, 3 5.21). If neighbouring vortex filaments on the same line 
(separated by a)  are given the same displacement x, = olei@, y, = BeiM, the 
solution of the linearized perturbation equations yields the dispersion relation 

A = (ro/zna2) i~ f ( ~ 2 -  czp], (13) 

where A = .9-9(2.- q5)  -n2/cosh2 (nb/a), (14) 

(15) 

(16) 

I nq5 sinh (n - 4) b/a n2 sinh $b/a 
‘cosh2 (nb/a) ’ 

B = i D = i  

C =  - 
( cosh (nb/a) 

n2 cosh ($b/a) n$ cosh (n - q5) b/a 
cosh2 (nbla) cosh (nb/a) * 

The condition $ = 1~ is most unstable as it makes C = 0 and 

A = &r2[1- 2 coshd2 (nb/a)], 

B = iD  = in2[sinh (nbla) cosh-2 (nbla)]. 
(17) 

(18) 

The condition A = 0 is necessary for stability and this yields the well-known 
condition 

cosh(nb/a) = 1 or b/a = 0.281. (19) 
The oscillation frequency is 

(20) 
where the numerical value corresponds to our case, a = 32 and I?,, = nR$ co = 766 
(the number of filaments in each vortex region). The growth rates at  two values 
of b/a are 

I m h  = f &rF0/a2 = 5 0.5895, 

h = 0.481 for b/a = 0.6, (21) 

h = ~ n r o / d  = 0.590 for b/a = 0. (22) 
Three additional analytical calculations are relevant to the results below. 

Kochin et al. (1964, pp. 226-234) applied a higher order perturbation calculation 
to the asymmetric point vortex street with b/a = 0,281. They have shown that 
the street is always unstable, i.e. arbitrary small displacements will cause vortices 
to “ . . . separate by a finite amount ”. This is not surprising as the KBrm&n street 
is unstable for b/az0.281. If odd vortices on the upper street are displaced 
upwards by e a configuration results which is identical to that obtained by in- 
creasing the separation to 0.281 + & and then displacing positive vortices up- 
wards by BE and negative vortices downwards by &. Since the latter system is 
linearly unstable, it would be reasonable to assume that the former system is 
unstable to finite-amplitude disturbances. 

Rosenhead has extended the von K&rm&n linear analysis by examining the 
effects of transverse free-slip boundaries (1929) and the effects of three-dimen- 
sional/small-area regions (1930). In  the first study Rosenhead assumed point 
vortices such that, if fixed y boundaries are introduced at  a distance -t &h from 
the centre of the street, the b/a ratio for ‘stability’ decreases from 0.281 to 0-256 
as a/h increases from 0 to 0.815. As a/h is increased further, the b/a line becomes 
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a region or area of stability. Rosenhead gives a formula for the modified stability 
line as 

b/a = 0-281 - 0.090(a/h)6 = 0.280, 

where we have used our ratio a/h = 0.5. (See Rosenhead (1929, equation (5), 
p. 321). Note that Rosenhead used 2b for the longitudinal distance between 
vortices, 2a for the transverse distance between vortices and 2c for the distance 
between the fixed walls.) In  comparison with finite area the transverse boundaries 
play a negligible role. 

In  the second study Rosenhead (1930) considered the behaviour of small 
circular vortices of radius E = R, where €/a < I. He assumed that vortices have 
azimuthal (m = 1)  self-interactions (‘ self-induction’) resulting only from x -  
direction perturbations of wavelength L, = 2771-l. (See Rosenhead 1930, pp. 595, 
599.) Rosenhead defined a parameter 

vn = - +a212 log (d) ,  E Z  < 1, 

where el is assumed small and qn > 0. The larger qn, the stronger is the self- 
induction. 

Physically, one must consider at  least four different length scales: 

A ,  < E < a < L,, 

where A,, is the amplitude of the perturbation of the mth azimuthal harmonic 
on the vortex surface and the remaining quantities have been previously defined. 
If L, and E are of comparable size and a1 & 1, then rR will be larger than unity 
and three-dimensional effects will be important. However, if L, is increased 
(a1 < 1) and €/a is kept fixed, then the parameter which describes self-induction 
will be dependent on A,,, E, a and b and only weakly dependent on al. For two 
vortices of the same sign an important parameter is 

q = 2B/a f 2e/a 

(Christiansen 1973) as described in § 8. Thus, Rosenhead’s (1930, p. 599) claim 
that for vR -+ 0 the stability analysis reduces to von K k m h ’ s  is incomplete for 
it implies the limit he used, namely A,, = 0 (m + l), el < 1, a1 > 1 (such that 
E/U < I); whereas all the work reported below assumes two-dimensionality, that 
is 1 = 0 and el = 0,  al = 0 and €/a < 1 but comparable with in some cases. 

5. Laminar wake with a triangular velocity profile 
To simulate a laminar triangular velocity profile with a random perturbation, 

we distribute uniformly 1600 positive (light) and 1600 negative (dark) point 
vortex filaments over an area 8 x 64 as shown in figure 1 (a). This results in two 
strips of vorticity density &, = f 6.26. The laminar state is perturbed by a random 
and incompressible velocity field producing an average displacement of 10-2 of 
each filament. 

Figure I ( b )  shows the longitudinal velocity profile obtained by integrating the 
resultant gand choosing the constant of integration to result in zero x momentum. 
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+ + +  + + + +  co= + 6 2 5  

(4 (b) 

FIUURE 1. Experiment I. (a) Initial distribution of vorticity (x-periodic box). ( b )  Initial 
velocity profiles at x: = 32. --, theoretical; - - -, t = 0.125; - - -, t = 4.0; . . . - . . , 
t = 6.0. 

The initial departure from the triangular profile is caused by the random per- 
turbation as well as by the area-weighting method mentioned in the appendix. 

The evolution of the perturbed triangular profile is shown in figure 2. We shall 
not discuss the linear phase of evolution as it has been well treated elsewhere 
(for example, Zabusky & Deem 1971). After approximately t = 4-2 the perturba- 
tion has grown and saturated because of nonlinear effects. At t = 4-75 we see that 
four negative and four positive elongated vortex regions of varying area have 
formed into an asymmetric pattern. Note that at  this stage small areas of positive 
or negative vorticity become ‘trapped’ within or behind the larger vortex of 
opposite polarity. Between t = 5.0 and 6.75 two negative vortex regions (2 and 3) 
fuse into an elongated structure. At t = 6.75 we see positive vortex regions (5 and 
6) begin to fuse. At t = 7-75 vortex region I is beginning to fuse with regions 2-3, 
but the process is inhibited by regions 5-6. Note that at  t = 7-75 the approximate 
transverse-to-longitudinal separation ratio is 6/Z = 0.42, that is, the wake width 
has increased by a factor of three owing to the fusion, elongation, rotation and 
jetting of vortex ‘streams’ or ‘arms’, that is, by convective processes. After 
t = 8.0 we have an irregular structure of three negative and three positive vortices 
per period with some mixing of positive and negative vortex filaments between 
the larger vortex regions. The situation corresponds roughly to an array of 
vortices staggered with respect to each other and moving in a weakly turbulent 
flow caused by ‘dispersion’ of vortex filaments. This situation still prevails at  
t = 10-5 (not shown in figure 2) with more filaments dispersed away from the 
main regions. Numerical finite-difference effects contribute to this dispersion 
and mixing of filaments and can be observed a t  t = 7-0. However, for a short time 
the intermixing of the small-scale chaotic motion does not affect the mean 
behaviour of the large-scale vortex structures. 

In  figure 2 a t  t = 4-15 we see that negative vortex 4 is elongated and its major 
axis rotates clockwise at  a non-uniform rate whose average period is 4.7 (measured 
over the range 4-75 < t < 10.25). A non-interacting ellipse (Kirchoff vortex; 
Lamb 1932, p. 230) has a period T2 = (4n/K0) (p+ I), where p = (2 - e2)/2( 1 - e2)*, 

15-2 
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e being the eccentricity of the ellipse. Arough estimate of vortex 4 gives e2 = 0.75, 
SO that T2 = 4.52, close to that of the deformed strongly interacting elongated 
vortex region. Note that all vortex regions are drifting slowly to the left, whereas 
the distant irrotational fluid is streaming uniformly to the right. 

In  figure 2 we observe that small trapped regions are convected around at 
the rotational frequency of the opposite-signed host vortex. This phenomenon 
was also observed and noted by Zabusky & Deem (1971) and they designated 
these small regions as ‘secondary’ vortices (see their figure 8, p. 368). Owing to 
vortex rotation (in an appropriate frame) or ‘nutation’ in the laboratory frame 
of reference, tracer particles, smoke or single vortex filaments will be transported 
to the opposite side of the vortex street. This phenomenon has been observed by 
Zdravkovich (1969,s 3 and figure 3) and can also be seen in figure 11 of Abernathy 
& Kronauer (1962). Thus we have an enhanced transport of material across a flow 
due to convection by vortex states formed as a result of a linear instability of 
the system. 

A comparison between this calculation and that of Abernathy & Kronauer 
(1962), which starts off from a rectangular velocity profile, is ditlicult. Some 
measure of agreement can be established with the calculation shown in their 
figure 11. The spacing ratio 61. far downstream in the wake is found to be approxi- 
mately 0.5 as opposed to our value of 0.42. It is, however, difficult to assess their 
value of 6/ii (as they mention), since the centres of the vortices formed are not 
well defined by the very small number of filaments (typically 10 as opposed to 
400 in our calculation). 

To summarize, in the early stages the linear instability driven by a particular 
random perturbation yields eight large vortices staggered with respect to each 
other. At t = 5.75 a11 vortices are elongated and nearly elliptical in shape but 
with different phases. The magnitude of the phases as well as the transverse 
separation between the vortices is a result of the initial conditions. This structure 
is unstable and like vortices are attracted and fuse in an attempt to  iind a more 
stable configuration. This transition from one vortex state to a more enduring 
state provides a heuristic explanation for the observations of Taneda (1959, 5 3, 
p. 847). At intermediate (100 < R < 150) and high (R > 150) Reynolds numbers 
the vortex streets in the wakes of cylinders (and flat plates) break down and 
reform such that the ratio of the effective wavelength of the secondary street 
to that of the primary street is two for intermediate R and “. . . of order 10” 
(according to Taneda) for high R. The intermediate-R result could be explained 
as merely the fusion of nearest-neighbour like-signed vortex regions as observed 
above or as more clearly observed later in this section. That is, viscous dissipation 
plays a small role in comparison with the convective dynamical rearrangement 
of vortex filaments. Taneda observes this rearrangement or breakdown to occur 
again further downstream, a phenomenon consistent with our calculations. 
Taneda’s high-R result is phenomenologically different for “. . . after the primary 
Kkm&n vortex street breaks down the wake becomes turbulent, . . . [a result 
already noted by Roshko in 19531.. . . The turbulent wake continues to exist 
for a considerable distance, then there appears again a new K&rm&n vortex 
street.” In  the laboratory, the wake may develop small three-dimensional 
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0 0 

I Periodic boundary conditions I 

FIGURE 3. Arrangement of vortices. 

destabilizing fluctuations that enhance the fusion of larger vortex regions over 
a moderate distance. The enhancement process will cease when the three- 
dimensional fluctuations undergo viscous decay and we are left with a new two- 
dimensional quasi-equilibrium state. 

6. Configurations of least instability 
We now study the stability and dynamics of two pairs of Rankine vortices 

of radius R, and density t c,. As shown in figure 3, they are placed in a staggered 
fashion in a box with periodic boundary conditions in x, simulating states 
encountered in laboratory and computational experiments as described above. 

Our realistic model considers finite-sized vortices. If initially circular, their 
radius R, is less than 

RM = t a ( l  +4b2/a2)* = 9.17 for a = 32, b/a = 0.281, 

if they are non-overlapping. The radius function of a vortex during the sub- 
sequent motion can be written as 

r2 = Ri + Zam eime, (23) 
where r is measured from the initial centre of the vortex 

The deformation of a vortex by a surface mode am decreases the energy of the 
vortex; hence the mode can be referred to as a negative-energy mode (Christiansen 
1973). Por incompressible fluids there is no m = 0 mode and expression (23) - 

conserves area ( = iJr r2(0) d0 = rrR8 . It is natural to ask: how does the finite 

area of vortex regions affect the von KBrm&n stability conditions? The instability 
that leads to a rearrangement of the street results from a growth of the m = 1 
mode for one or more vortices [see equation (23)]. 

We have performed four different numerical experiments all using b/a = 0-281 
in order to examine the stability properties of the arrangement sketched in 
figure 3. Experiments I1 and I11 have initially four circular vortices of radius 3.0 
and radius (35)6, respectively. In  experiment I1 we introduce fixed y boundaries, 
whilst I11 employs a double periodic geometry. The perturbation is in both cases 
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a displacement of 1.0 in the y direction of vortex 4, that is, an rn = 1 disturbance. 
Both experiments last for a time interval of 9.0, corresponding to 576 discrete 
time steps (see table 1) .  In  experiments IV and V we introduce very strong 
asymmetric perturbations: in experiment IV the major axes of positive vortices 
are inclined at 0-2 rad, whereas the major axes of negative vortices 3 and 4 are 
inclined a t  - 0-2 and Orad. In  experiment V the major axis of vortex 1 reduced 
from 7 to  4 so that the resulting density becomes $ times that of the other 
three vortices. In  both experiments vortex 4 is given a longitudinal displace- 
ment (also an m = 1 disturbance) of - 6.0. Experiments IV  and V last only for 
a time interval of 3.0. 

From figures 4 and 5, displaying the time evolution of experiments I1 and 
111, it can be seen that both flow fields are apparently stable with respect to a 
small transverse perturbation. For all four vortices in both experiments the ampli- 
tude of the perturbation (say the position of the lowest point on the boundary) 
is found to be 1-0 (the same as the initial amplitude) and the period is 11.0. 
This is in good agreement with the result given in (20): T = 27r/Im ( A )  = 10.7. 

In  both experiments the vortices rotate, deform and drift to the right with 
velocities nearly independent of their areas. Surface modes m = 2 , 3  and higher 
develop from the mutual interactions of vortices. This is illustrated in figure 5, 
where the first three frames each show only the boundaries of the vortex regions 
at three close times (the leftmost contour is for the smallest ofthe times indicated). 
The amplitudes of the surface modes oscillate with time, such that after one 
period of rotation To the circular form is reached again. The period To is 1.9. 
For a non-interacting vortex in an infinite medium the period is 1-8 (table 1). 
The difference is due to nonlinear effects as well as coupling between modes of 
different rn (see also 0 8). 

The fine-scale structure and surface corrugations that develop (as exhibited a t  
t = 8-75) are due to numerical area-weighting effects and do not disturb the 
large-scale dynamics. 

Experiments IV and V (figures not shown), with different initial conditions 
and strong perturbations, show similar effects, namely rotation, deformation and 
translation. In  these short runs we observe an oscillation period of 8.0 (instead of 
11.0) and no sign of a growing perturbation. This may be a finite-amplitude effect, 
however, the run duration is too small to make a definitive statement. The dif- 
ference in periods could also be a measurement error since we have less than 

period of information. 
The effect of the finite-difference algorithm on the small growth rates of 

a marginally stable system must be assessed. The variety of results presented 
here and the fact that parts of the vortex regions obviously extend into regions 
that are unstable for the point vortex system lead us to conclude that the 
observed stability is a property of the continuum, namely equation (2). The 
existence of negative-energy modes resulting from area-conserving surface de- 
formations (Christiansen 1973) contributes to this stability if the initial finite- 
amplitude disturbance is not too large. We conclude that high-R finite-area 
vortex streets have a small domain of stability around b/a = 0.281. 
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Measured 
Boundary Perturba- growth 

Experiment Figure Area condition tion rate, A, 

VI 6 Large Fixed Large 0-62 

VIII 7 Large Periodic Small 0.67 
IX 8 Small Periodic Small 0.67 

VII 7 Large Periodic Small - 

TABLE 2 

Approxi- 
mate 
fusion 
time 

5.5 
5.8 
5.8 
6.9 

7. Unstable configurations 
We have performed four experiments with b/a = 0.6 as summarized in table 2. 
In  figure 6 we display the time evolution of experiment VI, whilst figure 7 

shows bothexperirnentsVI1 andVIII. Experiment IX, employing small vortices, 
is shown in figure 8. 

Experiments VI, VII and VIII ,  for the large-area vortices, all show fusion of 
positive regions at  about t = 6.5 (fixed boundary condition) andt = 5.75 (periodic 
boundary condition). Experiment IX, for the small-area vortices, shows fusion 
at  about t = 6.87 (15 vortex rotations). The initial positive vertical perturbation 
of the centre of vortex 4 is rapidly communicated to vortex 2,  which, while being 
ejected from the flow, attracts vortex 1. In experiment VI, although vortices 3 
and 4 are close together at t = 6-0, the dynamics do not allow fusion until t = 19.5. 

In  figure 9 we show the Ayc of vortex 1 (moving downwards) for experiments 
VI, VIII  and IX. Ayc is the difference between the ordinates of the centres of the 
vortices, 

AYC = YcW - Y C ( O ) ,  

as measured from enlarged figures similar to those given in this paper and has 
an accuracy of & 0.3 units. The motion of the lower vortices 3 and 4 is initially 
oscillatory. The measured growth rate given in table 2 shows a larger value for 
the larger area vortex and both values are about 30% larger than the 0.481 
for the point vortex system. This increase is undoubtedly due to the facts that 
the vortex extends into ‘more unstable’ regions, that is, where the ‘effective’ 
growth rate experienced by a point vortex is larger than that experienced by 
a point vortex at the centre of the finite-area region; and finite-amplitude effects 
are important early in the dynamics. (Note that, at t = 2, Ayc = 2.5 units.) 

At later times when the dynamics arenonlinear and there are large distortions to 
the vortex surface (m = 2,3, . . . ), the rate of approach of like-signedlarge vortices 
is enhanced, leading to a smaller fusion time. We find no significant change in the 
growth rate when the area is changed by a factor of %%. 

Beyond fusion, in the interval t = 7-19 (see figure 6) the centroid of the fusion 
vortex is nearly stationary at the upper right and the two remaining vortices 
undergo precession. When they approach after t = 7.5, the vortex nearest to 
the fusion vortex is perturbed by the latter, i.e. a large m = 2 mode develops. 
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FIGURE 9. Growth of vortex centre deviations AyC and measured growth rates for systems 
with bla = 0.6. x , experiment VI; + , experiment VIII; 0, experiment IX. 

At t = 18-5 the two negative vortices have completed a full precession around their 
mutual centre and have also moved 6 of the period in the + x direction. The upper 
vortex and the fusion vortex now form a binary system which travels downward, 
The lower vortex cannot move further downward (fixed boundary condition), 
hence the two negative vortices fuse. The elongated shape of the resulting vortex 
at t = 20-5 is a result of the lower y boundary being fixed, since a circular or 
slightly elliptic shape would give rise to a net motion towards the lower boundary. 
At t = 23-5 we note that the elongated vortex has contracted and thrown off 
spiral arms. The final result is then a ‘secondary’ vortex street, with larger regions 
of positive and negative vorticity in asymmetric or staggered positions. 

The dispersion and mixing of small-scale positive and negative vortex filaments 
between the larger vortex regions are strongly affected by numerical truncation 
errors, but play an insignificant role. This is analogous to real systems with 
finite but high R where small scales are dissipated. Two-dimensional fluid 
dynamic systems are known to seek states with larger scales (energy flowing to 
longer modes). This represents a new kind of condensation phenomenon. 

8. Collinear asymmetric street of strongly interacting vortices 

a standing wave with zero velocity : 

V, = (ro/2a) tan h(.rrb/u) = 0. 

Koopman (1967, p. 508) has shown that configurations with a small value of 
bla can be generated in the laboratory by oscillating the cylinder transverse to 
the direction of flow. (In essence pockets of vorticity are detached from the 
cylinder at times that correspond to the transverse motion of the pocket across 
the axis of the flow.) Recently experiments have been made by Griffin & Votaw 
(1972) on the generation of vortex streets with small b/a values. Their figure 8 
shows an almost collinear vortex street, but with a small value of the inter- 
action parameter 7 = 2 R / a  (see $ 4  above). The evolution of this vortex street 
agrees with previous observations, and the general character of the breakdown 
resembles those of the configurations studied in $ 7 .  

The collinear (b/a = 0 )  asymmetric vortex street (see figure 10) is initially 
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The collinear vortex street pictured in figure 10 has a high initial value of 7 
thereby enhancing the self-induction effects mentioned in $4. The results 
obtained in our experiment X show linear instability regions followed by a 
strikingly new phenomenon: the fission of one vortex. 

A transverse perturbation is given to vortex 4 (the fourth on the line) and it 
grows during 0 < t < 6.0, while the centre of vortex 3 is slightly displaced down- 
wards. The measured initial growth rate is 

A, = 0.41, 

smaller than the point vortex value of 0.59. 
Qualitatively, one may explain this reduction by noting that the outer areas 

of the collinear vortices are in spatial regions where the growth rate of a point 
vortex is smaller. That is, a first approximation to the growth rate of a finite- 
area system may be obtained by weighting the vorticity distribution with the 
growth rate due to that vorticity treated as a point vortex system. 

The strong perturbations (mainly m = 2) that develop because of the close 
interaction between the vortices get increasingly out of phase as the applied 
disturbance grows. At t = 7.0 the phase difference between the m = 2 mode on 
vortex 2 and those on vortices 3 and 4 is a maximum. This causes a stretching 
followed by fission of vortex 2 in the strongly sheared velocity field. The upper 
fission product is left nearly free while the lower fission product is trapped below 
vortex 3. At t = 12.5 the upper fission product fuses with vortex 1 and much 
later at t = 16.5 the lower fission product fuses with vortex I. At this time we 
still have a fission product from vortex 3 in the centre of the frame. 

The fission of large-area vortex regions is the result of strong interactions with 
nearby vortex regions (large 7).  It is strictly a two-dimensional phenomenon, 
i.e. it is subject to the correct phase mixing of perturbations which typically 
remain two-dimensional over a time period of two vortex rotations. For smaller 
values of 7 only the predicted m = 1 instability occurs, leading to a breakdown 
pattern as observed by Griffin & Votaw (1972) and also in our experiments 
VI-IX. Thus the stability properties of a collinear vortex street strongly depend 
on 7 ; indeed a truly nonlinear situation. 

9. Discussion and conclusion 
In  this paper we have shown that the measured growth rates of finite-area 

vortex streets differ from those of corresponding point vortex systems (von 
KkmSLn systems). For small and moderate areas (small 7) the difference is weakly 
dependent upon area and shape, but strongly dependent upon @/a), as illus- 
trated in figure 11. In this figure we conjecture that there exists a region (al, a,) 
on the bla axis, 

a, < 0.281 < a,, 

where the growth rate is negative, that is, the presence of negative-energy modes 
on the surface of finite-area vortex systems is stabilizing. 

Furthermore, because the vorticity is distributed the growth rate is reduced 
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FIGURE 11. Perturbation theory growth rates. -, von K4rmrin dispersion relation for 
asymmetric point vortex system ; ---, corresponding moderate-area system ; 0, experi- 
ments VIII and IX;  0, experiment X. 

in regions I and I1 and increased in region 111. These comments may resolve 
some problems and paradoxes raised by Wille (1960), who discusses mostly point 
vortex systems. He remarks (1960, p. 2 7 7 )  “On the whole the theory of vortex 
streets that comes under the heading stability is not yet satisfactory. One cannot 
easily understand the fact that the stability theory of first order describes the 
physical phenomenon in very good approximation, whereas further mathematical 
analysis always predicts instability, which means vortices cannot remain in 
a regular pattern.” That is, if the Reynolds number is sufficiently high, the 
stabilizing finite-area effect can overcome the destabilizing second-order effects 
for the small region (al, 0 1 ~ ) .  

An obvious question can be posed. How does the slightly perturbed system 
evolve if 0 < b/a < 0.2811 If the perturbation to the upper vortices is much 
smaller than b/a then both upper vortex regions will rise at a rate which 
decreases in time as they approach a ‘stable band’ around 0.281. The 
assumption of a decreasing rate is consistent with the observed lower growth 
rate of the collinear finite-area street described above and also with the 
Zabusky & Deem (1971) calculations, as illustrated in their figure 11 (b). It also 
accounts for the experimental observation shown by Wille (1960) in his figure 3. 
Here he presents a graph of the growth of a ‘ corrected’ ratio (bla), versus distance 
behind a circular cylinder in water. The separation ratio begins at (b/a), N 0-1 
and slowly grows to an asymptote (b/a),  = 0.37. The (bla), ratio then seems to 
oscillate around the asymptote (we see a slight decrease followed by an increase). 
According to $ 6  above, we conclude that the vortex regions are oscillating in 
a quasi-stable region. We are not sure if (b/a), = 0.37 is an estimate of the upper 
boundary of the ‘stable band’ or whether there is a systematic error in reducing 
the data to Furthermore, if the perturbation is sufficiently strong, the 
rising vortex regions will probably ‘pass through’ the stable band and undergo 
fusion as described in § 7 .  

At long times, systems with b/a > 0.281 are unstable. Like-signed regions of 
vorticity attract and finally fuse (coalesce or ‘ condense ’). For a collinear asym- 
metric street of strongly interacting vortices, we observed a linear growth phase 
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followed by a rapid $fission of one vortex, due to the high-shear field produced 
by the nearest-neighbour opposite-signed vortex regions. 

In  the initial phases of evolution of an unstable laminar shear profile we have 
also observed an enhanced transport of vorticity across the dominant flow 
direction. This results from large-scale convection produced by vortex rotation 
(or ‘nutation’). Asthevortex streetisforming, smallopposite-signed (‘secondary’) 
vortices appear across the flow, as illustrated in figure 2. Smoke or other con- 
taminant particles will also undergo convective transport. These results are in 
good agreement with those obtained by Zabusky & Deem and they are con- 
sistent with those of Abernathy & Kronauer. 

For comparison with laboratory experiments, these late-time two-dimensional 
computational results should be considered qualitative and heuristic as three- 
dimensional motions are probably generated during the breakdown and rapid re- 
arrangement stages. Vortex structures in the environment of a two-dimensional 
wind tunnel can have a longer lifetime than induced three-dimensional fluctua- 
tions. Thus our results qualitatively account for the vortex ‘breakdown’ and 
subsequent wavelength increase of vortex streets observed in ‘two-dimensional’ 
laboratory experiments by Taneda and others. 
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Appendix 
Suppose we are given N sets of co-ordinates (xi,yi). From these co-ordinates 

the vorticity 5 is evaluated on a Cartesian mesh using an area-weighting tech- 
nique (Harlow 1964; Amsden 1966). The stream function $ in equation (4) is 
solved for by the Hockney technique (Christiansen & Hockney 1971). The fluid 
velocity, equation (3), is evaluatedat meshpointsby centreddifference operations. 
To move the point vortices in their own velocity field a leapfrog time integration 
method is used so that a point vortex at time t - At can be moved according to 

r(t+At) = r( t -At)+u(r( t ) )  2At, (A 1) 

which approximates dr/& = u. It is necessary to employ two sets of co-ordinates, 
one at even times t+2nAt, one at odd times t+(2n+ 1)At. To evaluate the 
velocity u at the even position r( t )  in order to move from the odd position r(t - At), 
the area-weighting technique is used again to interpolate from the velocity 
values known at the mesh points. In  our experiments the VORTEX code com- 
putes a value of At that does not violate the Courant-Friedrichs-Lewy stability 
condition 

At < A%/I~rnaxl, 
16 F L M  61 

(A 2) 
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Experiments 

I 
I1 
I11 
IV 
V 
VI 
VII 
VII I  
IX 
X 

AEIEO 

1-49 x 10-3 
1-33 x 10-3 
2-17 x 10-3 
6.20 x 10-3 
1-77 x 10-3 
1-46 x 10-3 
6-11 x 10-4 
8-93 x 10-3 

1.49 x 
1.47 x 

A(5”>1(6>0 
2,62 x 10 
5.10 x 
8.20 x 10-2 
3-80 x 10-3 
6.37 x 10-3 
2-95 x 10-l 
1.63 x 
1-26 x 

2-14 x 10-1 
5.77 x 10-3 

t 0  

8.75 
8.75 
8.75 
3.0 
3.0 

23.5 
5.5 
5.5 
7-5 

16-5 

TABLE 3. Temporal variations in energy and enstrophy for experiments I-X. 

where lumaxI is the largest particle velocity and Ax is the constant mesh spacing 
(AX = Ay = 1.0). 

During each numerical experiment we monitor the conservation of linear 
momentum and kinetic energy, as well as the mean-square vorticity, or ‘en- 
strophy ’ by calculating 

p, = Z.%(i,j),  pv = p-qw 
$3 3 % , 3  

The incompressibility condition is identically satisfied for u, and uy at the mesh 
points at all times, such that a variation in P, and Pg is due to computer rounding- 
off errors, which are of the order corresponding to 18 bits in a computer 
word. The variations in energy and enstrophy are due to  the discretizations in 
time and space and reflect some of the inaccuracies of the model. 

I n  table 3 we list the temporal variations in E and (c2)>. As a reference to figures 
2, 4-8 and 10 we form the ratios AEIE, and A(g2)/(<2)o, where E, and (<z)o are 
the values at  time t = 0 and AE and A @ ? >  are the deviations from these values 
at the time to indicated in the last frame. 

The leapfrog scheme [equation (A l)] will exhibit odd-even temporal numerical 
instabilities when applied to certain types of flows. The two alternating levels 
at times (2n + 1) At and 2nAt will increasingly diverge from their average. To 
suppress this ‘false’ effect a smoothing procedure is applied at a certain fre- 
quency during the motion (Christiansen 1970). 
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